Creating Your Own Encrypted File “Safe”

I often think about, no scratch that – I often worry about what would happen if my laptop was stolen or fell into “evil” hands. I mean there isn’t a lot on any of my machines that could be misused as most things are locked down. My Internet-based accounts such as my Google account require two factor authentication, important files are backed up, etc. However, there are special files, and here I’m specifically thinking about SSH private keys, that should never be out of my control. My solution is fairly simple: create an encrypted file that can be mounted as a loopback device.

The first step is deciding how much speed we are going to need as we cannot directly resize our encrypted file once it is created. If we later need more storage (or less) our only option is to create a new one and copy the contents of the old (mounted) safe to the new one. I use mine to store my entire ~/.ssh, ~/.gpg, and a few other files so my needs are fairly small. All of my files together account for less than 100MB, but knowing that I might want to expand later I decided on 1GB.

If we are using ext2/3/4, xfs, and probably a few other filesystems we can use fallocate to reserve our disk space. I say probably a few others as I know of at least one it doesn’t work on which is zfs.

fallocate -l 1G safe.img

The next step is to create an encrypted device on our new blank image:

cryptsetup luksFormat safe.img

During this step you will be prompted for a password and this is really the only weak spot (bugs not withstanding) in the entire setup. Make sure your password is long enough to make brute force unreasonably long and make sure it cannot be aided with any of the known dictionaries floating around. I made mine 31 characters long because it is long enough to make brute force unprofitable.

Once the encrypted data is written, we can proceed to opening the device:

cryptsetup open safe.img

You will be prompted to enter your password each time you open it so make sure you are using a trusted keyboard (i.e. not wireless).

The next step is to create a filesystem on our new safe:

mkfs.ext4 /dev/mapper/safe

Now, finally, we can mount it and start using it!

mount /dev/mapper/safe /mnt/safe

At this point you should be able to add files into your safe as if were any other mounted device.

Once you are done using your safe, don’t forget to unmount it and close it so that no-one can access it:

umount /mnt/safe

cryptsetup close safe

So now we know how to create, open, and close the device, but what sorts of things are good for storing in there? Well as previously mentioned I store my entire ~/.ssh/ directory in my safe. I moved the directory into /mnt/safe/ and then created a symlink from there to ~/.ssh which allows me to use everything I normally would (ssh, mosh, scp, etc.) without having to reconfigure anything.

What to do next is up to you, but I do tot trust the quality of USB thumb drives out there these days. So I opted to stick my safe on my local hard drive and include it in my backup scheme.

Advertisements

Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s